Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Satellite sensors have been widely used for precipitation retrieval, and a number of precipitation retrieval algorithms have been developed using observations from various satellite sensors. The current operational rainfall rate quantitative precipitation estimate (RRQPE) product from the geostationary operational environmental satellite (GOES) offers full disk rainfall rate estimates based on the observations from the advanced baseline imager (ABI) aboard the GOES-R series. However, accurate precipitation retrieval using satellite sensors is still challenging due to the limitations on spatio-temporal sampling of the satellite sensors and/or the uncertainty associated with the applied parametric retrieval algorithms. In this article, we propose a deep learning framework for precipitation retrieval using the combined observations from the ABI and geostationary lightning mapper (GLM) on the GOES-R series to improve the current operational RRQPE product. Particularly, the proposed deep learning framework is composed of two deep convolutional neural networks (CNNs) that are designed for precipitation detection and quantification. The cloud-top brightness temperature from multiple ABI channels and the lightning flash rate from the GLM measurement are used as inputs to the deep learning framework. To train the designed CNNs, the precipitation product multiradar multi-sensor (MRMS) system from the National Oceanic and Atmospheric Administration (NOAA) is used as target labels to optimize the network parameters. The experimental results show that the precipitation retrieval performance of the proposed framework is superior to the currently operational GOES RRQPE product in the selected study domain, and the performance is dramatically enhanced after incorporating the lightning data into the deep learning model. Using the independent MRMS product as a reference, the deep learning model can reduce the retrieval uncertainty in the operational RRQPE product by at least 31% in terms of the mean squared error and normalized mean absolute error, and the improvement is more significant in moderate to heavy rain regions. Therefore, the proposed deep learning framework can potentially serve as an alternative approach for GOES precipitation retrievals.more » « less
-
null (Ed.)ABSTRACT The launch of NOAA’s latest generation of geostationary satellites known as the Geostationary Operational Environmental Satellite (GOES)-R Series has opened new opportunities in quantifying precipitation rates. Recent efforts have strived to utilize these data to improve space-based precipitation retrievals. The overall objective of the present work is to carry out a detailed error budget analysis of the improved Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for GOES-R and the passive microwave (MW) combined (MWCOMB) precipitation dataset used to calibrate it with an aim to provide insights regarding strengths and weaknesses of these products. This study systematically analyzes the errors across different climate regions and also as a function of different precipitation types over the conterminous United States. The reference precipitation dataset is Ground-Validation Multi-Radar Multi-Sensor (GV-MRMS). Overall, MWCOMB reveals smaller errors as compared to SCaMPR. However, the analysis indicated that that the major portion of error in SCaMPR is propagated from the MWCOMB calibration data. The major challenge starts with poor detection from MWCOMB, which propagates in SCaMPR. In particular, MWCOMB misses 90% of cool stratiform precipitation and the overall detection score is around 40%. The ability of the algorithms to quantify precipitation amounts for the Warm Stratiform, Cool Stratiform, and Tropical/Stratiform Mix categories is poor compared to the Convective and Tropical/Convective Mix categories with additional challenges in complex terrain regions. Further analysis showed strong similarities in systematic and random error models with both products. This suggests that the potential of high-resolution GOES-R observations remains underutilized in SCaMPR due to the errors from the calibrator MWCOMB.more » « less
An official website of the United States government
